Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters

نویسنده

  • Benshi Zhu
چکیده

In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method. Keywords—Discrete boundary value problems, nonsmooth critical point theory, positive solutions, semipositone, sub-super solutions method

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel technique for a class of singular boundary value problems

In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...

متن کامل

A discrete fourth-order Lidstone problem with parameters

Keywords: Difference equations Boundary value problems Symmetric Green's function Fixed points Fourth-order Discrete Beam Lidstone Semipositone a b s t r a c t Various existence, multiplicity, and nonexistence results for nontrivial solutions to a non-linear discrete fourth-order Lidstone boundary value problem with dependence on two parameters are given, using a symmetric Green's function appr...

متن کامل

Positive solutions of second-order semipositone singular three-point boundary value problems

In this paper we prove the existence of positive solutions for a class of second order semipositone singular three-point boundary value problems. The results are obtained by the use of a GuoKrasnoselskii’s fixed point theorem in cones.

متن کامل

On Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value Problems

This study concerns the existence of positive solutions to classes of boundary value problems of the form where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in R N (N ≥ 2) with ∂Ω of class C 2 , and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x, u).

متن کامل

Positive solutions for singular semipositone boundary value problems on infinite intervals

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Positive solutions Cone Semipositone boundary value problems Infinite intervals a b s t r a c t By using the fixed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012