Positive Solutions for a Class of Semipositone Discrete Boundary Value Problems with Two Parameters
نویسنده
چکیده
In this paper, the existence, multiplicity and noexistence of positive solutions for a class of semipositone discrete boundary value problems with two parameters is studied by applying nonsmooth critical point theory and sub-super solutions method. Keywords—Discrete boundary value problems, nonsmooth critical point theory, positive solutions, semipositone, sub-super solutions method
منابع مشابه
A novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملA discrete fourth-order Lidstone problem with parameters
Keywords: Difference equations Boundary value problems Symmetric Green's function Fixed points Fourth-order Discrete Beam Lidstone Semipositone a b s t r a c t Various existence, multiplicity, and nonexistence results for nontrivial solutions to a non-linear discrete fourth-order Lidstone boundary value problem with dependence on two parameters are given, using a symmetric Green's function appr...
متن کاملPositive solutions of second-order semipositone singular three-point boundary value problems
In this paper we prove the existence of positive solutions for a class of second order semipositone singular three-point boundary value problems. The results are obtained by the use of a GuoKrasnoselskii’s fixed point theorem in cones.
متن کاملOn Positive Solutions for Some Nonlinear Semipositone Elliptic Boundary Value Problems
This study concerns the existence of positive solutions to classes of boundary value problems of the form where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in R N (N ≥ 2) with ∂Ω of class C 2 , and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x, u).
متن کاملPositive solutions for singular semipositone boundary value problems on infinite intervals
In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit: Keywords: Positive solutions Cone Semipositone boundary value problems Infinite intervals a b s t r a c t By using the fixed...
متن کامل